skip to main content


Search for: All records

Creators/Authors contains: "Raynolds, Martha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increased industrial development in the Arctic has led to a rapid expansion of infrastructure in the region. Localized impacts of infrastructure on snow distribution, road dust, and snowmelt timing and duration feeds back into the coupled Arctic system causing a series of cascading effects that remain poorly understood. We quantify spatial and temporal patterns of snow-off dates in the Prudhoe Bay Oilfield, Alaska, using Sentinel-2 data. We derive the Normalized Difference Snow Index to quantify snow persistence in 2019–2020. The Normalized Difference Vegetation Index and Normalized Difference Water Index were used to show linkages of vegetation and surface hydrology, in relationship to patterns of snowmelt. Newly available infrastructure data were used to analyze snowmelt patterns in relation infrastructure. Results show a relationship between snowmelt and distance to infrastructure varying by use and traffic load, and orientation relative to the prevailing wind direction (up to 1 month difference in snow-free dates). Post-snowmelt surface water area showed a strong negative correlation (up to −0.927) with distance to infrastructure. Results from field observations indicate an impact of infrastructure on winter near-surface ground temperature and snow depth. This study highlights the impact of infrastructure on a large area beyond the direct human footprint and the interconnectedness between snow-off timing, vegetation, surface hydrology, and near-surface ground temperatures.

     
    more » « less
  2. Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost. 
    more » « less
  3. We studied processes of ice-wedge degradation and stabilization at three sites adjacent to road infrastructure in the Prudhoe Bay Oilfield, Alaska, USA. We examined climatic, environmental, and subsurface conditions and evaluated vulnerability of ice wedges to thermokarst in undisturbed and road-affected areas. Vulnerability of ice wedges strongly depends on the structure and thickness of soil layers above ice wedges, including the active, transient, and intermediate layers. In comparison with the undisturbed area, sites adjacent to the roads had smaller average thicknesses of the protective intermediate layer (4 cm vs. 9 cm), and this layer was absent above almost 60% of ice wedges (vs. ∼45% in undisturbed areas). Despite the strong influence of infrastructure, ice-wedge degradation is a reversible process. Deepening of troughs during ice-wedge degradation leads to a substantial increase in mean annual ground temperatures but not in thaw depths. Thus, stabilization of ice wedges in the areas of cold continuous permafrost can occur despite accumulation of snow and water in the troughs. Although thermokarst is usually more severe in flooded areas, higher plant productivity, more litter, and mineral material (including road dust) accumulating in the troughs contribute to formation of the intermediate layer, which protects ice wedges from further melting. 
    more » « less
  4. null (Ed.)
  5. Abstract

    This study applies an indicators framework to investigate climate drivers of tundra vegetation trends and variability over the 1982–2019 period. Previously known indicators relevant for tundra productivity (summer warmth index (SWI), coastal spring sea-ice (SI) area, coastal summer open-water (OW)) and three additional indicators (continentality, summer precipitation, and the Arctic Dipole (AD): second mode of sea level pressure variability) are analyzed with maximum annual Normalized Difference Vegetation Index (MaxNDVI) and the sum of summer bi-weekly (time-integrated) NDVI (TI-NDVI) from the Advanced Very High Resolution Radiometer time-series. Climatological mean, trends, and correlations between variables are presented. Changes in SI continue to drive variations in the other indicators. As spring SI has decreased, summer OW, summer warmth, MaxNDVI, and TI-NDVI have increased. However, the initial very strong upward trends in previous studies for MaxNDVI and TI-NDVI are weakening and becoming spatially and temporally more variable as the ice retreats from the coastal areas. TI-NDVI has declined over the last decade particularly over High Arctic regions and southwest Alaska. The continentality index (CI) (maximum minus minimum monthly temperatures) is decreasing across the tundra, more so over North America than Eurasia. The relationship has weakened between SI and SWI and TI-NDVI, as the maritime influence of OW has increased along with total precipitation. The winter AD is correlated in Eurasia with spring SI, summer OW, MaxNDVI, TI-NDVI, the CI and total summer precipitation. This winter connection to tundra emphasizes the role of SI in driving the summer indicators. The winter (DJF) AD drives SI variations which in turn shape summer OW, the atmospheric SWI and NDVI anomalies. The winter and spring indicators represent potential predictors of tundra vegetation productivity a season or two in advance of the growing season.

     
    more » « less
  6. null (Ed.)
  7. Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al.,Nat. Clim. Chang.(3), 673–677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al.,Philos. Trans. A Math. Phys. Eng. Sci.(371), 20130097 (2013) and Post et al.,Sci.Adv. (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic—documented here by multiple proxies—likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.

     
    more » « less
  8. Abstract

    Sedimentary plant waxδ2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen‐alkanoic acid andn‐alkane chain‐length distributions andn‐alkanoic acidδ2H andδ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalixspp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐alkanoic acidδ2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalixspp. In contrast, sedimentary long‐chainn‐alkanoic acidδ2H values fall between those for submerged/floating aquatic plants andSalixspp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes.

     
    more » « less
  9. Abstract

    The Arctic has warmed three times the rate of the global average, resulting in extensive thaw of perennially frozen ground known as permafrost. While it is well understood that permafrost thaw will continue and likely accelerate, thaw rates are nonuniform due, in part, to the expansion of Arctic trees and tall shrubs that may increase ground temperatures. However, in permafrost regions with short‐stature vegetation (height < 40 cm), our understanding of how ground temperature regimes vary by vegetation type is limited as these sites are generally found in remote high‐latitude regions that lack in situ ground temperature measurements. This study aims to overcome this limitation by leveraging in situ shallow ground temperatures, remote sensing observations, and topographic parameters across 22 sites with varying types of short‐stature vegetation on Baffin Island, Canada, a remote region underlain by rapidly warming continuous permafrost. Results suggest that the type of short‐stature vegetation does not necessarily correspond to a distinct shallow ground temperature regime. Instead, in permafrost regions with short‐stature vegetation, factors that control snow duration, such as microtopography, may have a larger effect on evolving ground temperature regimes and thus permafrost vulnerability. These findings suggest that anticipating permafrost thaw in regions of short‐stature vegetation may be more nuanced than previously suggested.

     
    more » « less